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The Stokes flow round a smooth body with an attached vortex 

K. B. R A N G E R  

Department of Mathematics, University of Toronto, Toronto, Canada 

(Received October 17, 1975) 

S U M M A R Y  
Two dimensional Stokes flow is considered round a smooth body containing in general a concave region 
facing the fluid. It is found that when the profile is shaped in a more complicated manner than a circle or an 
ellipse an attached vortex is present in the flow and this can exist when the body is partly concave. 

1. Introduction 

In [1] the streaming Stokes flow past a spherical cap was examined in some detail. The 
spherical cap (umbrella shape) appears to be the simplest axially symmetric geometrical 
shape with a concave region facing the fluid for which analytical treatment is possible. 
It was found for any angle a of the cap (0 < a < ~) there is a stream surface ~p = 0 in 
the fluid and bounded by the rim of the cap which traps the fluid on the concave surface 
of the cap in the form of a ring vortex such that ~ = 0, separates this vortex from the 
mainstream motion. In the ease of the cap the stresses and vorticity are singular at the rim 
which separates regions of positive and negative vorticity on the boundary. 

The purpose of this paper is to examine the flow past a smooth body containing a concave 
or re-entry region facing the fluid. The difficulty in this situation is to find a smooth body 
for which analytical treatment is possible. In fact, for the axially symmetric flow, though 
it is possible to determine the stream function and velocity field explicitly, the results can- 
not be found in a closed form suitable for determining any useful physical information 
concerning the fluid flow. With this in mind, the most tractable approach is to consider a 
two dimensional flow analogue of the three dimensional motion. There is an affinity 
between the two dimensional and axially symmetric flows and a physical feature present 
in one flow is almost certain to be present in the other. 

Since it is not possible to find a streaming Stokes flow in two dimensions past a fixed 
body the leading term in the Stokes inner expansion will be determined analytically. This 
solution will represent the flow in the neighbourhood of the boundary and becomes infinite 
most slowly at large distances from the body. The flow at infinity is in fact that due to a 
Stokeslet situated at the origin. The body considered in this paper is the geometrical inverse 
of an oblate ellipse with respect to the unit circle centred outside its boundary, and on a 
line coincident with its minor axis. The inverse boundary lies between the arc of a circle 
in one limiting case and a complete circle in the other limit situation. For intermediate 
values of the parameters the boundary is smooth and has a concave or re-entry region 
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facing the fluid. The stream function ~9~ in the inverse plane is found using inversion and 
a conformal mapping technique for biharmonic functions, and a fairly simple closed form 
is determined for the complex velocity. The vorticity is found on the boundary and discussed 
for representative values of the parameters. 

It is found that a vortex is attached to the boundary when the profile is concave and that 
concavity is a necessary condition for this vortex to form. For the case of a circular arc 
there is a vortex attached to the concave face for all angles of the arc, but in the other li- 
miting case of a circle there is no separation at all. 

Finally the axially symmetric flow past a limagon of revolution, r = 1 + e cos 0, 
0 < e < 1, is discussed as a regular perturbation of the sphere in the parameter 5. The 
two and three term Stokes expansion both predict that a vortex will form when ~ is approxi- 
mately �89 This is the value of ~ when the limagon develops an indentation about its rear end 
0 = n. Since Stokes flow is reversible the vortex will be attached to the boundary in front 
or behind the body according to the direction of the flow. 

2. Flow past a circle 

The solution of the biharmonic equation which becomes infinite most slowly at large dis- 
tances from a circle r = 1 is determined from the boundary value problem 

a 2 1 ~ 1 a 2 

V ~ = O ,  V ~ - ~ r  2 +- - r  ~-r +--r2 --aO 2 (1) 

ar 
= - -  = 0 at r = 1, ~ ,,, r log r sin 0 as r ~ oo. (2) 

ar 

The solution is easily found to be 

~ = { r l o g r  �89  - 1 ) }  sin 0, (3) 

and the vorticity on the boundary is given by 

c o = V ~ O = 2 s i n 0 ,  r = l ,  0 < 0 < n .  (4) 

Since both the stream function and its normal derivative vanish on the boundary it is 
necessarY only to observe changes in the sign of co to determine whether reverse flow will 
occur. In the present case o9 is positive for 0 < 0 -< re and there will be no reverse flow. 
The same remark also applies to a prolate or oblate ellipse but for more complicated 
shapes like the one treated in the next section the flow is not as simple and reverse flow 
will occur for certain values of the geometric parameters. 

3. Inversion of  biharmonic functions 

The transformation 

X--C Y R ~ = x ? + y ~ ,  (5) 
x i =  R2 , Yi = - ~ ,  
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Figure 3. C-plane. 
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where R = 1/Ri = [(x - c) 2 + y2]~- defines geometrical inversion with respect to the unit 
circle centred at the point (c, 0) in the (x, y) plane. If  ~ is the stream function in the in- 
verse plane it is known that [2] 

R2, (6) 

where ~ki is biharmonic in the (xi, yi) plane and ~ is biharmonic in the (x, y) plane. 
In the present situation the boundary in the (x, y) plane is an oblate ellipse defined by 

22 
z = x + iy = ff ~ I,~1 < 1, (7) 

with t~l = 1, on the ellipse. The inverse curve cf is of fourth order which in general pos- 
sesses a region which is concave to the fluid region, as shown in the diagram. The inverse 
transformation of (7) is expressed by 

z 
( = - f  + �89 z + 422) ~, (8) 

so that the exterior of the unit circle 1(1 = 1, maps into the exterior of the ellipse. Further- 
more if z(d) = c and d > 1, the exterior of the ellipse inverts into the exterior of the closed 
curve ci and vice versa. The flow at infinity in the (x i, Y3 plane is equivalent to a Stokeslet 
at the origin and is given by 

~ i ' ~ y i l o g R  i as R i ~ ,  (9) 

so that in the (x, y) plane there is a Stokeslet at z = c and the local flow is expressed by 

Yi 
~ ?R--- v- log Ri = - y  log R as (x - c) 2 + y2 ~ 0. (10) 

1 
- - - - ( z  - ~ ) { l o g ( z  - c )  + l o g ( ~  - c ) } ,  ( 1 1 )  

4i 

as z ~ c. The complex velocity 

u + i v =  2 i - -  ~ ,,~ - � 8 9  c) - l o g ( ~ -  c) 
0F t +(z-e)  c)} 

as z ~ c, (12) 

and in terms of ( plane coordinates, the singularity in the velocity as ~ ~ d is 

2 i ~  ,-, - �89  { - log( f f  - d) - l o g ( ( - d )  + {z(0 - ~(()} 1 } , e ' ( d )  (C - as Z 0 3 )  

On the boundary of the unit circle in the ~ plane ~ = e ~4, the stream function ~ satisfies 
the boundary conditions 

=--~k = 0 ,  on ( = e  i4. (14) 
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The factor - �89  will be removed from (13) and taken as unity in the analysis which follows. 
Let f2 = 49 + iO and f2 satisfy 

Ozf2 
- 0 ,  ( 1 5 )  

052 

then f2(z, 5) = F(z) + 5G(z), where F and G are arbitrary functions of z. 49 and ~O are 
conjugate biharmonic functions defined by 

249 = F(z) + 5G(z) + if(5) + zg(5), ) 

2itp = F(z) - F(~) + 5G(z) - zG(5). ~ (16) 

If  z ---- z(0 is a conformal transformation which maps the unit circle in the g-plane into 
the boundary c in the (x, y) plane, ~ can be represented by 

2i~k = f ( 0  - f ( ~ )  - g(05(~) + O(~)z(0. (17) 

Again if the boundary is a streamline and satisfies no slip conditions on 1~[ = 1 

oO 
- ~g - 0,  o n  Igl = 1, (18)  

that is 

_ f , (~ - l )  + z(09,(~-I)  _ U(~-1)9(0 = O. (19) 

If  f ( 0 ,  g (0  are analytic in the fluid region, then 

Y ' ( O  = 5 ' ( 0  g ( ~ -  ~) - 2 ( ~ -  ~) ~'(0, (20) 

so that 

2 i ~  = 5'(~){9(~ -1) - g(~)} + {z(O - z(~-x)}.~'(~), 

or equivalently in terms of the complex fluid velocity 

u + iv = 2ir = g(~-l)  _ g(O + {z(O - z(~-x)} 0'(~). 
~'(0 

(21) 

(22) 

The stream function ~ can be found by direct integration of (21) as follows: 

= _ + ~ ' ( 0 g ( C 1 ) d ~  

(23) 

and ~O is real with ~k = 0, on I~l = I. 
It is noted the vorticity is given by 

wi - 4i~bg _ 2{z'(O.~'(~ ) - U(~)g'(O } 
z'(05'(O z'(05'(O 

=4im{ z'(O-~'(~) } 
z'(O 5'(0 (24) 
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In the present case z(0 = ( - ),2/( and a suitable form for g(0  is 

g (0  = l o g ( (  - d) - l o g  ( -  d 2 ( ( -  l i d ) '  (25) 

where the constant 

( l - d 2 ) ( 1  + 2 2  ) 
A -  

d(1 + 2Z/d 2) 

The complex fluid velocity is then given by 

u + iv = 2~k~i 

( 1 - ~ @ d )  A ( l o g ( ( - d )  A 1 
= l o g  1 -  d 2 ( 1 - ( / d )  ( - - 1 7 d  + d 2 ( ( -  1/d) 

+ ( ( _ ) , 2 / ( _ 1 / ( + ) , 2 ( ) {  1 1 .4 1 

~ - - ) 2 ~  ( - d  ( -  1/~ + d -5-  ( ( - -  l/d) 2" 
(26) 

To examine the flow near the boundary it is sufficient to investigate the variation of the 
vorticity on the boundary. To this end it will suffice to consider 

(1 - ),2)(1 - d 2) sin q~ 

(d 2 + 1 - 2d cos q~) 

A{sin 2~b(d 2 - )`2) _ 2d(1  - ) ` 2 )  s in  ~b} 
+ (27) 

(d 2 + 1 - 2d cos ~b) 2 

The vorticity changes sign at ~b = e, where 

(1 - 22)(1 - d2)(d 2 + 1 - 2dcos e) 

+ 2A[cos o~(d 2 -  2 2) - 2d(1 - 22)] = 0. (28) 

To show that a real value of e (0 < e < ~) exists consider the local sign of ? as q~ -~ 0, 
and ~b -~ ~. First as tk ~ 0 

7 = rib{ (1 - )`2)(1 - d 2 ) ( d  - 1) 2 + 2"4(22 - d2 - (1 - 2 2 ) d ) } ( ~ _ _  ]~- , (29) 

which is negative. 
Now as ~b approaches n 

( r c - ~ b ) ( d - 1 )  { } 
y = ( d ~ - ] ) 2 ~  ~ i f )  2d(d - 22)(1 + )`2) _ (1 - 22)(1 + d)(d 2 + )`2) , 

and choosing a representative value 22 = �89 

2~ = (d ~- 1 ) ~  2 -+-5) 3 d ( d -  

(30) 

(31) 
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The sign of ~ thus depends on the sign of 

3 d ( 2 d -  1) - (1 + d)(d 2 + �89 (32) 

At d = 1, this is zero and for values of d slightly greater than unity (32) is positive. For  
some fl > 1, the quartic vanishes at d = fl, then becomes negative for all larger values of  d. 
Thus as d increases from unity y is initially negative but becomes positive. It is noted that 
when 2 = 1 which is the case of a circular arc, 

(1 + ~2)(1 - d2) 2 
y = - (~z - ~b)2d (1 + 1/d2)(d + 1) 4 < 0, (33) 

indicating that a vortex forms on the concave side of  the arc. It is now appropriate to 
discuss the variation of  the body profile with d. The body first develops concavity at 
~b = n and the condition for 22 = �89 is readily shown to be 

9 -  x/77 9 + x/77 
< 1 < d < (34) 

2 2 

and for d > �89 + ~/77) the body is everywhere convex to the fluid. The conclusion in 
this case is that a vortex will be attached to the boundary about ~b = ~ when the body 
is concave. The fact that (32) is initially negative for values d slightly greater than unity 
indicates that concavity in itself is not necessarily a condition for a vortex to form except 
in the case 2 = 1 and the profile is a circular arc. There is no separation when 2 = 0 as 
this is the case of the profile being a circle, a situation already discussed. 

The effect of such a ring vortex is a novel feature for Stokes flow in that attached ring 
vortex formation is usually associated with convective or Reynolds effect rather than 
diffusion of  vorticity which is the mechanism present here. Since Stokes flow corresponds 
to a minimum dissipation of energy the vortex should be observable because the motion 
is stable. 

4. Flow past an elliptic lima~on of  revolution 

In this section an axially symmetric flow past a body with a concave region facing the 
fluid will be considered briefly. The limagon r = 1 + e cos 0 contains an indentation 
about 0 = re, for �89 < e < 1, so that this region is concave towards the fluid. Consider 
a perturbation analysis of the flow, because the exact solution is excessively complicated. 
The flow may be expanded in the form 

oo 

O = Z e" O.(r, 0), (35) 
n = O  

where the leading term O0(r, 0) is the Stokes flow past the sphere r = 1, given by 

~o = (�89 - �88 + ~--~)sinZ O. (36) 
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The two term Stokes expansion is readily found by standard methods and is given by 

= 0o + 5~,1 + 0(5 2) 

( 1) 
-~ �89 2 - �88 + ~ r  sin2 0 + �88 -~- - 1 cos 0 sin 2 0 + 0(52). (37) 

The ring vorticity on the boundary is found to be 

l = 3 + 3~ cos 0, (38) 

so that l first vanishes when 5 = �89 which is the value of e at which the concave region 

first develops. The three term Stokes expansion is also found by standard methods and is 

expressed by 

~0= �89 2 - � 8 8  s i n / 0 + � 8 8  - 1 c o s 0 s i n / 0  

) -]- /~2(5 COS 2 0 -- 1) -10r3 - sin 2 0 + r sin e 0. (39) 

The ring vorticity 1 in this case is 

l = ~ + 35 cos 0 + ~2[_ as  cos2 0 "-~ 3 ( 5  COS 2 0 - -  1) + 3]. (40) 

At 0 = n, the ring vorticity vanishes when 

-a-sz + e - �89 = 0 (41) lo 

giving e - .44. Since the error is of order e 3, the indications are that a vortex forms when 

the lima~on is at first convex everywhere and also when the body is concave, i.e. 5 > �89 

This result is subject however to higher order approximations. In any case it seems fairly 
certain that separation will occur for the limagon when e > �89 and the closed stream surface 

will leave the surface of the body at a tangent plane. I t  may be anticipated that other 
axially symmetric bodies will exhibit a similar phenomenon, but as pointed out in the 
introduction analytical verification is difficult because conformal mapping techniques do 

not apply to three dimensional flow with the same simplicity. 
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